“For a given bond price, the higher the interest rate volatility assumed, the lower the OAS for a callable bond.” pg351
I thought that higher IR vol -> higher option cost -> lower bond price (since long callable bond = short option) -> higher yield -> higher OAS
What gives?
That means, the option is even more expensive. Thus, when you strip out the option, the lower the spread.
Are you saying:
*option is stripped* -> value of bond increases by the value of the option; higher option cost -> higher bond price increase -> lower yield
?
<!-- /* Font Definitions */ @font-face {font-family:Times; panose-1:2 0 5 0 0 0 0 0 0 0; mso-font-charset:0; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 0 0 0 1 0;} @font-face {font-family:“MS 明朝”; panose-1:0 0 0 0 0 0 0 0 0 0; mso-font-charset:128; mso-generic-font-family:roman; mso-font-format:other; mso-font-pitch:fixed; mso-font-signature:1 134676480 16 0 131072 0;} @font-face {font-family:“Cambria Math”; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 0 0 0 1 0;} @font-face {font-family:Cambria; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 0 0 0 1 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0in; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:“MS 明朝”; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:“Times New Roman”; mso-bidi-theme-font:minor-bidi;} p {mso-style-noshow:yes; mso-style-priority:99; mso-margin-top-alt:auto; margin-right:0in; mso-margin-bottom-alt:auto; margin-left:0in; mso-pagination:widow-orphan; font-size:10.0pt; font-family:Times; mso-fareast-font-family:“MS 明朝”; mso-fareast-theme-font:minor-fareast; mso-bidi-font-family:“Times New Roman”;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:“MS 明朝”; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:“Times New Roman”; mso-bidi-theme-font:minor-bidi;} @page WordSection1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.WordSection1 {page:WordSection1;} -->
Yes, that is correct. If you stripped the value of the call option the value of the callable bond would have to increase to be equal to a bond without the call provision. The way to look at this from a yield stand point is the higher yield of a bond with an embedded option would decrease until it equals that of the yield without the option.
I think you are probably still hung on the OAS concept. Find a spot rate curve image with z-spread, oas, and treasury rates and it will make more sense.
Remember, OAS means the spread with the effect of the option removed; the OAS is the Z-spread minus the option value.
If interest rate volatility increases, the value of the embedded option increases. Thus, the OAS decreases (subtracting a bigger value gives a smaller difference).